Ti3C2Tx MXene van der Waals Gate Contact for GaN High Electron Mobility Transistors

Author:

Wang Chuanju1,Xu Xiangming2ORCID,Tyagi Shubham2,Rout Paresh C.2,Schwingenschlögl Udo2,Sarkar Biplab3,Khandelwal Vishal1,Liu Xinke4,Gao Linfei4,Hedhili Mohamed Nejib5,Alshareef Husam N.2ORCID,Li Xiaohang1ORCID

Affiliation:

1. Advanced Semiconductor Laboratory King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia

2. Physical Science and Engineering Division (PSE) King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia

3. Department of Electronics & Communication Engineering IIT Roorkee Roorkee Uttarakhand 247667 India

4. College of Materials Science and Engineering Shenzhen Key Laboratory of Microscale Optical Information Technology Guangdong Research Center for Interfacial Engineering of Functional Materials Shenzhen University 3688 Nanhai Ave Shenzhen 518060 P. R. China

5. Core Laboratories King Abdullah University of Science and Technology (KAUST) Thuwal 23955–6900 Saudi Arabia

Abstract

AbstractGate controllability is a key factor that determines the performance of GaN high electron mobility transistors (HEMTs). However, at the traditional metal‐GaN interface, direct chemical interaction between metal and GaN can result in fixed charges and traps, which can significantly deteriorate the gate controllability. In this study, Ti3C2Tx MXene films are integrated into GaN HEMTs as the gate contact, wherein van der Waals heterojunctions are formed between MXene films and GaN without direct chemical bonding. The GaN HEMTs with enhanced gate controllability exhibit an extremely low off‐state current (IOFF) of 10−7 mA mm−1, a record high ION/IOFF current ratio of ≈1013 (which is six orders of magnitude higher than conventional Ni/Au contact), a high off‐state drain breakdown voltage of 1085 V, and a near‐ideal subthreshold swing of 61 mV dec−1. This work shows the great potential of MXene films as gate electrodes in wide‐bandgap semiconductor devices.

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3