Ductile P‐Type AgCu(Se,S,Te) Thermoelectric Materials

Author:

Shen Kelin12,Yang Qingyu12,Qiu Pengfei123,Zhou Zhengyang12,Yang Shiqi1,Wei Tian‐Ran4,Shi Xun12ORCID

Affiliation:

1. State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China

4. State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China

Abstract

AbstractDuctile inorganic thermoelectric (TE) materials open a new approach to develop high‐performance flexible TE devices. N‐type Ag2(S,Se,Te) and p‐type AgCu(Se,S,Te) pseudoternary solid solutions are two typical categories of ductile inorganic TE materials reported so far. Comparing with the Ag2(S,Se,Te) pseudoternary solid solutions, the phase composition, crystal structure, and physical properties of AgCu(Se,S,Te) pseudoternary solid solutions are more complex, but their relationships are still ambiguous now. In this work, via systematically investigating the phase composition, crystal structure, mechanical, and TE properties of about 60 AgCu(Se,S,Te) pseudoternary solid solutions, the comprehensive composition–structure–property phase diagrams of the AgCuSe‐AgCuS‐AgCuTe pseudoternary system is constructed. By mapping the complex phases, the “ductile‐brittle” and “n‐p” transition boundaries are determined and the composition ranges with high TE performance and inherent ductility are illustrated. On this basis, high performance p‐type ductile TE materials are obtained, with a maximum zT of 0.81 at 340 K. Finally, flexible in‐plane TE devices are prepared by using the AgCu(Se,S,Te)‐based ductile TE materials, showing high output performance that is superior to those of organic and inorganic–organic hybrid flexible devices.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3