Blocking Spatiotemporal Crosstalk between Subcellular Organelles for Enhancing Anticancer Therapy with Nanointercepters

Author:

Li Huiyan12,Zhang Huilin13,He Xiaofang4,Zhao Peiran1,Wu Tong1,Xiahou Jinxuan2,Wu Yelin5,Liu Yanyan1,Chen Yang5,Jiang Xingwu1,Lv Guanglei1,Yao Zhenwei3,Wu Jian2ORCID,Bu Wenbo13ORCID

Affiliation:

1. Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 P. R. China

2. Department of Medical Microbiology and Parasitology MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology School of Basic Medical Sciences Fudan University Shanghai 200032 P. R. China

3. Departments of Radiology and Neurosurgery Huashan Hospital Fudan University Shanghai 200040 P. R. China

4. Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing 210023 P. R. China

5. Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China

Abstract

AbstractThe spatiotemporal characterization of signaling crosstalk between subcellular organelles is crucial for the therapeutic effect of malignant tumors. Blocking interactive crosstalk in this fashion is significant but challenging. Herein, a communication interception strategy is reported, which blocks spatiotemporal crosstalk between subcellular organelles for cancer therapy with underlying molecular mechanisms. Briefly, amorphous‐core@crystalline‐shell Fe@Fe3O4 nanoparticles (ACFeNPs) are fabricated to specifically block the crosstalk between lysosomes and endoplasmic reticulum (ER) by hydroxyl radicals generated along with their trajectory through heterogeneous Fenton reaction. ACFeNPs initially enter lysosomes and trigger autophagy, then continuous lysosomal damage blocks the generation of functional autolysosomes, which mediates ER–lysosome crosstalk, thus the autophagy is paralyzed. Thereafter, released ACFeNPs from lysosomes induce ER stress. Without the alleviation by autophagy, the ER‐stress‐associated apoptotic pathway is fully activated, resulting in a remarkable therapeutic effect. This strategy provides a wide venue for nanomedicine to exert biological advantages and confers new perspective for the design of novel anticancer drugs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3