Red Phosphorescence at Elevated Temperatures Enabled by Dexter Energy Transfer in Polyaromatic Hydrocarbon‐Xanthone Systems

Author:

Yang Guangxin1,Hao Subin2,Dan Yuxin1,Dang Li2,Zhang Han1,Zhang Qiang1,Li Anze1,Li Ming‐De2,Yuan Wang Zhang1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800 Dongchuan Rd., Minhang District Shanghai 200240 China

2. College of Chemistry and Chemical Engineering Key (Guangdong‐Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University No. 243 Daxue Rd., Jinping District Shantou 515063 China

Abstract

AbstractOrganic materials with red persistent phosphorescence hold immense promise for biotechnology due to their excellent tissue permeability and high signal‐to‐background ratios. However, inefficient spin‐orbit coupling, high triplet susceptibility, and narrow energy gapspromoted nonradiative deactivations, pose a formidable obstacle to achieving efficient red phosphorescence. This study addresses these challenges by introducing xanthone (Xan)‐based host–guest systems. Utilizing polyaromatic hydrocarbons (PAHs) as guests, efficient red to near‐infrared (NIR) phosphorescent materials with ultralong lifetimes and high quantum yields of up to 821 ms and 2.32%, respectively, are successfully developed. Ultrafast spectroscopy and theoretical studies reveal that Dexter energy transfer (DET) is the dominant mechanism responsible for red phosphorescence. This DET process between Xan and PAHs not only effectively utilizes the dark triplet state of the Xan host but also significantly enhances the triplet generation of the PAH guests, transforming them into potent phosphorescent luminophores. Furthermore, the inherent rigidity of Xan and PAHs endows the resulting materials with excellent phosphorescence performance, even at elevated temperatures (e.g., 423 K). This strategy, proven to be general, paves the way for designing efficient red/NIR phosphorescent materials through the DET mechanism, enabling their applications in molecular imaging and advanced high‐temperature encryption.

Funder

National Natural Science Foundation of China

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3