Designed Spin‐Texture‐Lattice to Control Anisotropic Magnon Transport in Antiferromagnets

Author:

Meisenheimer Peter1ORCID,Ramesh Maya2,Husain Sajid13,Harris Isaac4,Park Hyeon Woo5,Zhou Shiyu6,Taghinejad Hossein4,Zhang Hongrui13,Martin Lane W.78,Analytis James4,Stevenson Paul9,Íñiguez‐González Jorge1011,Kim Se Kwon5,Schlom Darrell G.21213,Caretta Lucas14,Yao Zhi15,Ramesh Ramamoorthy1347ORCID

Affiliation:

1. Department of Materials Science and Engineering University of California Berkeley CA 94720 USA

2. Department of Materials Science and Engineering Cornell University Ithaca NY 14853 USA

3. Materials Science Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

4. Department of Physics University of California Berkeley CA 94720 USA

5. Department of Physics Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 South Korea

6. Department of Physics Brown University Providence RI 02912 USA

7. Departments of Physics and Astronomy and Materials Science and NanoEngineering and Rice Advanced Materials Institute Rice University Houston TX 77005 USA

8. Department of Chemistry Rice University Houston TX 77005 USA

9. Department of Physics Northeastern University Boston MA 02115 USA

10. Materials Research and Technology Department Luxembourg Institute of Science and Technology (LIST) Esch‐sur‐Alzette Luxembourg

11. Department of Physics and Materials Science University of Luxembourg Esch‐sur‐Alzette Belvaux 1511 Luxembourg

12. Kavli Institute for Nanoscale Science Cornell University Ithaca NY 14853 USA

13. Leibniz‐Institut für Kristallzüchtung 12489 Berlin Germany

14. School of Engineering Brown University Providence RI 02912 USA

15. Applied Mathematics and Computational Research Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

Abstract

AbstractSpin waves in magnetic materials are promising information carriers for future computing technologies due to their ultra‐low energy dissipation and long coherence length. Antiferromagnets are strong candidate materials due, in part, to their stability to external fields and larger group velocities. Multiferroic antiferromagnets, such as BiFeO3 (BFO), have an additional degree of freedom stemming from magnetoelectric coupling, allowing for control of the magnetic structure, and thus spin waves, with the electric field. Unfortunately, spin‐wave propagation in BFO is not well understood due to the complexity of the magnetic structure. In this work, long‐range spin transport is explored within an epitaxially engineered, electrically tunable, 1D magnonic crystal. A striking anisotropy is discovered in the spin transport parallel and perpendicular to the 1D crystal axis. Multiscale theory and simulation suggest that this preferential magnon conduction emerges from a combination of a population imbalance in its dispersion, as well as anisotropic structural scattering. This work provides a pathway to electrically reconfigurable magnonic crystals in antiferromagnets.

Funder

Basic Energy Sciences

Army Research Office

Office of Science

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3