Deformation‐Induced Photoprogrammable Pattern of Polyurethane Elastomers Based on Poisson Effect

Author:

Yan Shuzhen1ORCID,Deng Xinlu2,Chen Shuai1ORCID,Ma Tianjiao1,Li Tiantian1,Hu Kaiming2,Jiang Xuesong1ORCID

Affiliation:

1. School of Chemistry & Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory for Metal Matrix Composite Materials Shanghai Jiao Tong University Shanghai 200240 China

2. School of Mechanical Engineering State Key Laboratory of Mechanical Systems and Vibration Shanghai Jiao Tong University Shanghai 200240 China

Abstract

AbstractElastomers with high aspect ratio surface patterns are a promising class of materials for designing soft machines in the future. Here, a facile method for fabricating surface patterns on polyurethane elastomer by subtly utilizing the Poisson effect and gradient photocrosslinking is demonstrated. By applying uniaxial tensile strains, the aspect ratio of the surface patterns can be optionally manipulated. At prestretched state, the pattern on the polyurethane elastomer can be readily constructed through compressive stress, resulting from the gradient photocrosslinking via selective photodimerization of an anthracene‐functionalized polyurethane elastomer (referred to as ANPU). The macromolecular aggregation structures during stretching deformation significantly contribute to the fabrication of high aspect ratio surface patterns. The insightful finite element analysis well demonstrates that the magnitude and distribution of internal stress in the ANPU elastomer can be regulated by selectively gradient crosslinking, leading to polymer chains migrate from the exposed region to the unexposed region, thereby generating a diverse array of surface patterns. Additionally, the periodic surface patterns exhibit tunable structural color according to the different stretching states and are fully reversible over multiple cycles, opening up avenues for diverse applications such as smart displays, stretchable strain sensors, and anticounterfeiting devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3