Machine Learning‐Enabled Tomographic Imaging of Chemical Short‐Range Atomic Ordering

Author:

Li Yue1ORCID,Colnaghi Timoteo2,Gong Yilun13ORCID,Zhang Huaide4,Yu Yuan4,Wei Ye5,Gan Bin6,Song Min7,Marek Andreas2,Rampp Markus2,Zhang Siyuan1,Pei Zongrui8,Wuttig Matthias4,Ghosh Sheuly1,Körmann Fritz19,Neugebauer Jörg1,Wang Zhangwei7,Gault Baptiste110ORCID

Affiliation:

1. Max‐Planck‐Institut für Eisenforschung GmbH Max‐Planck‐Straße 1 40237 Düsseldorf Germany

2. Max Planck Computing and Data Facility Gießenbachstraße 2 85748 Garching Germany

3. Department of Materials University of Oxford Parks Road Oxford OX1 3PH UK

4. Institute of Physics (IA) RWTH Aachen University 52056 Aachen Germany

5. Ecole Polytechnique Fédérale de Lausanne School of Engineering Rte Cantonale Lausanne 1015 Switzerland

6. Suzhou Laboratory No.388, Ruoshui Street, SIP Jiangsu 215123 China

7. State Key Laboratory of Powder Metallurgy Central South University Changsha 410083 China

8. New York University New York NY 10012 USA

9. Materials Informatics BAM Federal Institute for Materials Research and Testing Richard‐Willstätter‐Str. 11 12489 Berlin Germany

10. Department of Materials Imperial College South Kensington London SW7 2AZ UK

Abstract

AbstractIn solids, chemical short‐range order (CSRO) refers to the self‐organization of atoms of certain species occupying specific crystal sites. CSRO is increasingly being envisaged as a lever to tailor the mechanical and functional properties of materials. Yet quantitative relationships between properties and the morphology, number density, and atomic configurations of CSRO domains remain elusive. Herein, it is showcased how machine learning‐enhanced atom probe tomography (APT) can mine the near‐atomically resolved APT data and jointly exploit the technique's high elemental sensitivity to provide a 3D quantitative analysis of CSRO in a CoCrNi medium‐entropy alloy. Multiple CSRO configurations are revealed, with their formation supported by state‐of‐the‐art Monte‐Carlo simulations. Quantitative analysis of these CSROs allows establishing relationships between processing parameters and physical properties. The unambiguous characterization of CSRO will help refine strategies for designing advanced materials by manipulating atomic‐scale architectures.

Funder

European Research Council

Natural Science Foundation of Hunan Province

Deutsche Forschungsgemeinschaft

Alexander von Humboldt-Stiftung

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3