Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe2 Probed by THz Spintronic Emission

Author:

Abdukayumov Khasan1,Mičica Martin2,Ibrahim Fatima1ORCID,Vojáček Libor1ORCID,Vergnaud Céline1,Marty Alain1,Veuillen Jean‐Yves3,Mallet Pierre3,de Moraes Isabelle Gomes1,Dosenovic Djordje4,Gambarelli Serge5,Maurel Vincent5,Wright Adrien2,Tignon Jérôme2,Mangeney Juliette2,Ouerghi Abdelkarim6,Renard Vincent7,Mesple Florie7,Li Jing8ORCID,Bonell Frédéric1,Okuno Hanako4,Chshiev Mairbek19ORCID,George Jean‐Marie10,Jaffrès Henri10,Dhillon Sukhdeep2,Jamet Matthieu1ORCID

Affiliation:

1. CEA, CNRS, Université Grenoble Alpes, Grenoble INP IRIG‐Spintec Grenoble 38000 France

2. Laboratoire de Physique de l'Ecole Normale Supérieure ENS Université PSL, CNRS Sorbonne Université, Université de Paris Paris 75005 France

3. CNRS, Université Grenoble Alpes, Grenoble INP‐UGA Institut NéeL Grenoble 38000 France

4. CEA, IRIG‐MEM Université Grenoble Alpes Grenoble 38000 France

5. CEA, CNRS, IRIG‐SYMMES Université Grenoble Alpes Grenoble 38000 France

6. CNRS Centre de Nanosciences et de Nanotechnologies Université Paris‐Saclay Palaiseau 91120 France

7. CEA, IRIG‐Pheliqs Université Grenoble Alpes Grenoble 38000 France

8. CEA, Leti Université Grenoble Alpes Grenoble 38000 France

9. Institut Universitaire de France Paris 75231 France

10. Unité Mixte de Physique CNRS, Thales Université Paris‐Saclay Palaiseau F‐91767 France

Abstract

Abstract2D materials, such as transition metal dichalcogenides, are ideal platforms for spin‐to‐charge conversion (SCC) as they possess strong spin–orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as‐grown PtSe2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe2 unaffected, resulting in well‐defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness‐dependent electronic structure of PtSe2 allows the control of SCC. Indeed, the transition from the inverse Rashba–Edelstein effect (IREE) in 1–3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.

Funder

Graphene Flagship

H2020 Future and Emerging Technologies

Agence Nationale de la Recherche

Université Grenoble Alpes

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3