A Gate‐Tunable Ambipolar Quantum Phase Transition in a Topological Excitonic Insulator

Author:

Que Yande1ORCID,Chan Yang‐Hao23ORCID,Jia Junxiang1ORCID,Das Anirban45,Tong Zhengjue1,Chang Yu‐Tzu2,Cui Zhenhao1,Kumar Amit1,Singh Gagandeep1,Mukherjee Shantanu456ORCID,Lin Hsin7ORCID,Weber Bent1ORCID

Affiliation:

1. School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore

2. Institute of Atomic and Molecular Sciences Academia Sinica Taipei 106319 Taiwan

3. Physics Division National Center of Theoretical Physics Taipei 10617 Taiwan

4. Department of Physics Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India

5. Center for Atomistic Modelling and Materials Design Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India

6. Quantum Centre for Diamond and Emergent Materials Indian Institute of Technology Madras Chennai Tamil Nadu 600036 India

7. Institute of Physics Academia Sinica Taipei 115201 Taiwan

Abstract

AbstractCoulomb interactions among electrons and holes in 2D semimetals with overlapping valence and conduction bands can give rise to a correlated insulating ground state via exciton formation and condensation. One candidate material in which such excitonic state uniquely combines with non‐trivial band topology are atomic monolayers of tungsten ditelluride (WTe2), in which a 2D topological excitonic insulator (2D TEI) forms. However, the detailed mechanism of the 2D bulk gap formation in WTe2, in particular with regard to the role of Coulomb interactions, has remained a subject of ongoing debate. Here, it shows that WTe2 is susceptible to a gate‐tunable quantum phase transition, evident from an abrupt collapse of its 2D bulk energy gap upon ambipolar field‐effect doping. Such gate tunability of a 2D TEI, into either n‐ and p‐type semimetals, promises novel handles of control over non‐trivial 2D superconductivity with excitonic pairing.

Funder

Ministry of Education - Singapore

Ministry of Science and Technology, Taiwan

National Research Foundation Singapore

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3