Affiliation:
1. Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Suzhou Key Laboratory of Soft Material and New Energy College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
2. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering Donghua University Shanghai 200051 China
Abstract
AbstractThe resistance of gels and elastomers increases significantly with tensile strain, which reduces conductive stability and restricts their use in stable and reliable electronics. Here, highly conductive tough hydrogels composed of silver nanowires (AgNWs), liquid metal (LM), and poly(vinyl alcohol) (PVA) are fabricated. The stretch‐induced orientations of AgNWs, deformable LM, and PVA nanocrystalline create conductive pathways, enhancing the mechanical properties of the hydrogels, including increased ultimate fracture stress (13‐33 MPa), strain (3000–5300%), and toughness (390.9–765.1 MJ m−3). Notably, the electrical conductivity of the hydrogels is significantly improved from 4.05 × 10−3 to 24 S m−1 when stretched to 4200% strain, representing a 6000‐fold enhancement. The incorporation of PVA nanocrystalline, deformable LM, and AgNWs effectively mitigates stress concentration at the crack tip, thereby conferring crack propagation insensitivity and fatigue resistance to the hydrogels. Moreover, the hydrogels are designed with a reversible crosslinking network, allowing for water‐induced recycling.
Funder
National Natural Science Foundation of China
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献