Bioorthogonal Guided Activation of cGAS‐STING by AIE Photosensitizer Nanoparticles for Targeted Tumor Therapy and Imaging

Author:

Cui Minhui12,Tang Dongsheng12,Wang Bin12,Zhang Hanchen12,Liang Ganghao12,Xiao Haihua12ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

2. University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractPhotodynamic therapy (PDT) and photothermal therapy (PTT) leverage reactive oxygen species (ROS) and control local hyperthermia by photosensitizer to perturb intracellular redox equilibrium, inducing DNA damage in both mitochondria and nucleus, activating the cGAS‐STING pathway, ultimately eliciting antitumor immune responses. However, current photosensitizers are encumbered by limitations such as suboptimal tumor targeting, aggregation‐caused quenching (ACQ), and restricted excitation and emission wavelengths. Here, this work designs novel nanoparticles based on aggregation‐induced emission (AIE) photosensitizer (BODTPE) for targeted tumor therapy and near‐infrared II fluorescence imaging (NIR‐II FLI) with enhanced PDT/PTT effects. BODTPE is employed as a monomer, dibenzocyclooctyne (DBCO)‐PEG2k‐amine serving as an end‐capping polymer, to synthesize a BODTPE‐containing polymer (DBD). Further, through self‐assembly, DBD and mPEG‐DSPE2k combined to form nanoparticles (NP‐DBD). Notably, the DBCO on the surface of NP‐DBD can react with azide groups on cancer cells pretreated with Ac4ManNAz through a copper‐free click reaction. This innovative formulation led to targeted accumulation of NP‐DBD within tumor sites, a phenomenon convincingly demonstrated in murine tumor models subjected to N‐azidoacetylmannosamine‐tetraacylated (Ac4ManNAz) pretreatment. Significantly, NP‐DBD exhibits a multifaceted effect encompassing PDT/PTT/NIR‐II FLI upon 808 nm laser irradiation, thereby better activating the cGAS‐STING pathway, culminating in a compelling tumor inhibition effect augmented by robust immune modulation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3