Surface Engineering of Fluorinated Graphene Nanosheets Enables Ultrafast Lithium/Sodium/Potassium Primary Batteries

Author:

Luo Zhenya123ORCID,Ma Jun12ORCID,Wang Xiao12ORCID,Chen Duanwei12ORCID,Wu Dazhuan3ORCID,Pan Junan12ORCID,Pan Yong12ORCID,Ouyang Xiaoping123

Affiliation:

1. School of Materials Science and Engineering Xiangtan University Xiangtan Hunan 411105 China

2. National‐Provincial Laboratory of Special Function Thin Film Materials Xiangtan University Xiangtan Hunan 411105 China

3. College of Energy Engineering Zhejiang University Hangzhou Zhejiang 310027 China

Abstract

AbstractFluorinated carbon (CFx) is considered as a promising cathode material for lithium/sodium/potassium primary batteries with superior theoretical energy density. However, achieving high energy and power densities simultaneously remains a considerable challenge due to the strong covalency of the C–F bond in the highly fluorinated CFx. Herein, an efficient surface engineering strategy combining surface defluorination and nitrogen doping enables fluorinated graphene nanosheets (DFG‐N) to possess controllable conductive nanolayers and reasonably regulated C–F bonds. The DFG‐N delivers an unprecedented dual performance for lithium primary batteries with a power density of 77456 W kg−1 and an energy density of 1067 Wh kg−1 at an ultrafast rate of 50 C, which is the highest level reported to date. The DFG‐N also achieves a record power density of 15 256 and 17 881 W kg−1 at 10 C for sodium and potassium primary batteries, respectively. The characterization results and density functional theory calculations demonstrate that the excellent performance of DFG‐N is attributed to surface engineering strategies that remarkably improve electronic and ionic conductivity without sacrificing the high fluorine content. This work provides a compelling strategy for developing advanced ultrafast primary batteries that combine ultrahigh energy density and power density.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3