Realization of a 2D Lieb Lattice in a Metal–Inorganic Framework with Partial Flat Bands and Topological Edge States

Author:

Wu Wenjun1ORCID,Sun Shuo1,Tang Chi Sin2,Wu Jing3,Ma Yu1,Zhang Lingfeng1,Cai Chuanbing1,Zhong Jianxin4,Milošević Milorad V.5,Wee Andrew T. S.67,Yin Xinmao1ORCID

Affiliation:

1. Department of Physics Shanghai Key Laboratory of High Temperature Superconductors Shanghai University Shanghai 200444 China

2. Singapore Synchrotron Light Source (SSLS) National University of Singapore Singapore 117603 Singapore

3. Institute of Materials Research and Ring (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Singapore

4. Center for Quantum Science and Technology Department of Physics Shanghai University Shanghai 200444 China

5. Department of Physics & NANOlab Center of Excellence University of Antwerp Groenenborgerlaan 171 Antwerp B‐2020 Belgium

6. Department of Physics Faculty of Science National University of Singapore Singapore 117542 Singapore

7. Centre for Advanced 2D Materials and Graphene Research National University of Singapore Singapore 117546 Singapore

Abstract

AbstractFlat bands and Dirac cones in materials are the source of the exotic electronic and topological properties. The Lieb lattice is expected to host these electronic structures, arising from quantum destructive interference. Nevertheless, the experimental realization of a 2D Lieb lattice remained challenging to date due to its intrinsic structural instability. After computationally designing a Platinum‐Phosphorus (Pt‐P) Lieb lattice, it has successfully overcome its structural instability and synthesized on a gold substrate via molecular beam epitaxy. Low‐temperature scanning tunneling microscopy and spectroscopy verify the Lieb lattice's morphology and electronic flat bands. Furthermore, topological Dirac edge states stemming from pronounced spin‐orbit coupling induced by heavy Pt atoms are predicted. These findings convincingly open perspectives for creating metal–inorganic framework‐based atomic lattices, offering prospects for strongly correlated phases interplayed with topology.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3