Liquid Metal Actuators: A Comparative Analysis of Surface Tension Controlled Actuation

Author:

Liao Jiahe1ORCID,Majidi Carmel2ORCID,Sitti Metin134ORCID

Affiliation:

1. Physical Intelligence Department Max Planck Institute for Intelligent Systems Heisenbergstr. 3 70569 Stuttgart Germany

2. Robotics Institute Mechanical Engineering Carnegie Mellon University 5000 Forbes Ave Pittsburgh PA 15213 USA

3. Institute for Biomedical Engineering ETH Zürich Zürich 8092 Switzerland

4. School of Medicine College of Engineering Koç University Istanbul 34450 Turkey

Abstract

AbstractLiquid metals, with their unique combination of electrical and mechanical properties, offer great opportunities for actuation based on surface tension modulation. Thanks to the scaling laws of surface tension, which can be electrochemically controlled at low voltages, liquid metal actuators stand out from other soft actuators for their remarkable characteristics such as high contractile strain rates and higher work densities at smaller length scales. This review summarizes the principles of liquid metal actuators and discusses their performance as well as theoretical pathways toward higher performances. The objective is to provide a comparative analysis of the ongoing development of liquid metal actuators. The design principles of the liquid metal actuators are analyzed, including low‐level elemental principles (kinematics and electrochemistry), mid‐level structural principles (reversibility, integrity, and scalability), and high‐level functionalities. A wide range of practical use cases of liquid metal actuators from robotic locomotion and object manipulation to logic and computation is reviewed. From an energy perspective, strategies are compared for coupling the liquid metal actuators with an energy source toward fully untethered robots. The review concludes by offering a roadmap of future research directions of liquid metal actuators.

Funder

Max-Planck-Gesellschaft

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3