On the Topotactic Phase Transition Achieving Superconducting Infinite‐Layer Nickelates

Author:

Li Yan1,Liu Changjiang1,Zheng Hong1,Jiang Jidong Samuel1,Zhu Zihua2,Yan Xi1,Cao Hui1,Narayanachari K.V.L.V.3,Paudel Binod4,Koirala Krishna Prasad4,Zhang Zhan5,Fisher Brandon6,Wang Huanhua78,Karapetrova Evguenia5,Sun Chengjun5,Kelly Shelly5,Phelan Daniel1,Du Yingge4,Buchholz Bruce3,Mitchell J. F.1,Bhattacharya Anand1,Fong Dillon D.1ORCID,Zhou Hua5ORCID

Affiliation:

1. Materials Science Division Argonne National Laboratory Lemont IL 60439 USA

2. Environmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USA

3. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA

4. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland WA 99352 USA

5. X‐ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA

6. Center for Nanoscale Materials Argonne National Laboratory Lemont IL 60439 USA

7. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

8. University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractTopotactic reduction is critical to a wealth of phase transitions of current interest, including synthesis of the superconducting nickelate Nd0.8Sr0.2NiO2, reduced from the initial Nd0.8Sr0.2NiO3/SrTiO3 heterostructure. Due to the highly sensitive and often damaging nature of the topotactic reduction, however, only a handful of research groups have been able to reproduce the superconductivity results. A series of in situ synchrotron‐based investigations reveal that this is due to the necessary formation of an initial, ultrathin layer at the Nd0.8Sr0.2NiO3 surface that helps to mediate the introduction of hydrogen into the film such that apical oxygens are first removed from the Nd0.8Sr0.2NiO3 / SrTiO3 (001) interface and delivered into the reducing environment. This allows the square‐planar / perovskite interface to stabilize and propagate from the bottom to the top of the film without the formation of interphase defects. Importantly, neither geometric rotations in the square planar structure nor significant incorporation of hydrogen within the films is detected, obviating its need for superconductivity. These findings unveil the structural basis underlying the transformation pathway and provide important guidance on achieving the superconducting phase in reduced nickelate systems.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

National Science Foundation

University at Buffalo

Office of Science

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3