Affiliation:
1. Laboratory of Clean Energy Chemistry and Materials State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
3. State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310027 China
4. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310027 China
Abstract
AbstractHigh‐entropy (HE) materials, celebrated for their extraordinary chemical and physical properties, have garnered increasing attention for their broad applications across diverse disciplines. The expansive compositional range of these materials allows for nuanced tuning of their properties and innovative structural designs. Recent advances have been centered on their versatile photothermal conversion capabilities, effective across the full solar spectrum (300–2500 nm). The HE effect, coupled with hysteresis diffusion, imparts these materials with desirable thermal and chemical stability. These attributes position HE materials as a revolutionary alternative to traditional photothermal materials, signifying a transformative shift in photothermal technology. This review delivers a comprehensive summary of the current state of knowledge regarding HE photothermal materials, emphasizing the intricate relationship between their compositions, structures, light‐absorbing mechanisms, and optical properties. Furthermore, the review outlines the notable advances in HE photothermal materials, emphasizing their contributions to areas, such as solar water evaporation, personal thermal management, solar thermoelectric generation, catalysis, and biomedical applications. The review culminates in presenting a roadmap that outlines prospective directions for future research in this burgeoning field, and also outlines fruitful ways to develop advanced HE photothermal materials and to expand their promising applications.
Funder
National Natural Science Foundation of China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献