Facile Photopatterning of Perfusable Microchannels in Synthetic Hydrogels to Recreate Microphysiological Environments

Author:

Mora‐Boza Ana123,Mulero‐Russe Adriana123,Caprio Nikolas Di456,Burdick Jason A.456,Singh Ankur13,García Andrés J.13ORCID

Affiliation:

1. George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta GA 30332‐0363 USA

2. Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology Atlanta GA 30332‐0535 USA

3. Petit Institute for Bioengineering and Biosciences Georgia Institute of Technology Atlanta GA 30332‐0363 USA

4. Department of Bioengineering University of Pennsylvania Philadelphia PA 19104‐6321 USA

5. BioFrontiers Institute University of Colorado Boulder Boulder CO 80309 USA

6. Department of Chemical and Biological Engineering University of Colorado Boulder Boulder CO 80309 USA

Abstract

AbstractThe fabrication of perfusable hydrogels is crucial for recreating in vitro microphysiological environments. Existing strategies to fabricate complex microchannels in hydrogels involve sophisticated equipment/techniques. A cost‐effective, facile, versatile, and ultra‐fast methodology is reported to fabricate perfusable microchannels of complex shapes in photopolymerizable hydrogels without the need of specialized equipment or sophisticated protocols. The methodology utilizes one‐step ultraviolet (UV) light‐triggered cross‐linking and a photomask printed on inexpensive transparent films to photopattern PEG‐norbornene hydrogels. Complex and intricate patterns with high resolution, including perfusable microchannels, can be fabricated in <1 s. The perfusable hydrogel is integrated into a custom‐made microfluidic device that permits connection to external pump systems, allowing continuous fluid perfusion into the microchannels. Under dynamic culture, human endothelial cells form a functional and confluent endothelial monolayer that remains viable for at least 7 days and respond to inflammatory stimuli. Finally, approach to photopattern norbornene hyaluronic acid hydrogels is adapted, highlighting the versatility of the technique. This study presents an innovative strategy to simplify and reduce the cost of biofabrication techniques for developing functional in vitro models using perfusable three‐dimensional (3D) hydrogels. The approach offers a novel solution to overcome the complexities associated with existing methods, allowing engineering advanced in vitro microphysiological environments.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3