Biosystem‐Inspired Engineering of Nanozymes for Biomedical Applications

Author:

Zhang Lu12ORCID,Wang Huan12ORCID,Qu Xiaogang12ORCID

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 P. R. China

Abstract

AbstractNanozymes with intrinsic enzyme‐mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial‐and‐error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem‐inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem‐inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem‐inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem‐inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3