Defect‐Promoted Ni‐Based Layer Double Hydroxides with Enhanced Deprotonation Capability for Efficient Biomass Electrooxidation

Author:

Yang Yuwei1,Lie William Hadinata1,Unocic Raymond R2,Yuwono Jodie A3,Klingenhof Malte4,Merzdorf Thomas4,Buchheister Paul Wolfgang4,Kroschel Matthias4,Walker Anne5,Gallington Leighanne C.6,Thomsen Lars7,Kumar Priyank V1,Strasser Peter4,Scott Jason A1,Bedford Nicholas M1ORCID

Affiliation:

1. School of Chemical Engineering University of New South Wales Sydney NSW 2052 Australia

2. Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge Tennessee 37831 USA

3. School of Chemical Engineering The University of Adelaide Adelaide SA 5005 Australia

4. Department of Chemistry Chemical Engineering Division Technical University Berlin 10623 Berlin Germany

5. US Army DEVCOM Chemical Biological Center Aberdeen Proving Grounds MD 21010 USA

6. X‐Ray Science Division Argonne National Laboratory Argonne IL 60439 USA

7. Australian Synchrotron Australian Nuclear Science and Technology Organisation Clayton VIC 3168 Australia

Abstract

AbstractNi‐based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value‐added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts’ deprotonation propensity and Faradic efficiency of 5‐hydroxymethylfurfural (5‐HMF)‐to‐2,5 furandicarboxylic acid (FDCA, FEFDCA) is revealed by thorough density functional theory (DFT) simulations and atomic‐scale characterizations, including in situ synchrotron diffraction and spectroscopy methods. The deprotonation capability of ultrathin layer‐double hydroxides (UT‐LDHs) is regulated by tuning the covalency of metal (M)‐oxygen (O) motifs through defect site engineering and selection of M3+ co‐chemistry. NiMn UT‐LDHs show an ultrahigh FEFDCA of 99% at 1.37 V versus reversible hydrogen electrode (RHE) and retain a high FEFDCA of 92.7% in the OER‐operating window at 1.52 V, about 2× that of NiFe UT‐LDHs (49.5%) at 1.52 V. Ni–O and Mn–O motifs function as dual active sites for HMF electrooxidation, where the continuous deprotonation of Mn–OH sites plays a dominant role in achieving high selectivity while suppressing OER at high potentials. The results showcase a universal concept of modulating competing anodic reactions in aqueous biomass electrolysis by electronically engineering the deprotonation behavior of metal hydroxides, anticipated to be translatable across various biomass substrates.

Funder

Australian Renewable Energy Agency

U.S. Department of Energy

European Synchrotron Radiation Facility

Bundesministerium für Bildung und Forschung

National Computational Infrastructure

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3