Confining Prepared Ultrasmall Nanozymes Loading ATO for Lung Cancer Catalytic Therapy/Immunotherapy

Author:

Zhang Amin12,Gao Ang12,Zhou Cheng12,Xue Cuili12,Zhang Qian12,Fuente Jesus M. De La3,Cui Daxiang12ORCID

Affiliation:

1. Institute of Nano Biomedicine and Engineering Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument Department of Instrument Science and Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University 800 Dongchuan RD Shanghai 200240 P. R. China

2. National Center for Translational Medicine Collaborative Innovational Center for System Biology Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China

3. Institute of Nano Science and Technology University of Zaragoza Zaragoza 50018 Spain

Abstract

AbstractNanozymes with inherent enzyme‐mimicking catalytic properties combat malignant tumor progression via catalytic therapy, while the therapeutic efficacy still needs to be improved. In this work, ultrasmall platinum nanozymes (nPt) in a confined domain of a wormlike pore channel in gold nanobipyramidal–mesoporous silica dioxide nanocomposites, producing nanozyme carriers AP‐mSi with photoenhanced peroxidase ability, are innovatively synthesized. Afterward, based on the prepared AP‐mSi, a lung‐cancer nanozymes probe (AP‐HAI) is ingeniously produced by removing the SiO2 template, modifying human serum albumin, and loading atovaquone molecules (ATO) as well as IR780. Under NIR light irradiation, inner AuP and IR780 collaborate for photothermal process, thus facilitating the peroxidase‐like catalytic process of H2O2. Additionally, loaded ATO, a cell respiration inhibitor, can impair tumor respiration metabolism and cause oxygen retention, hence enhancing IR780's photodynamic therapy (PDT) effectiveness. As a result, IR780's PDT and nPt nanozymes' photoenhanced peroxidase‐like ability endow probes a high ROS productivity, eliciting antitumor immune responses to destroy tumor tissue. Systematic studies reveal that the obvious reactive oxygen species (ROS) generation is obtained by the strategy of using nPt nanozymes and reducing oxygen consumption by ATO, which in turn enables lung‐cancer synergetic catalytic therapy/immunogenic‐cell‐death‐based immunotherapy. The results of this work would provide theoretical justification for the practical use of photoenhanced nanozyme probes.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Shanghai Municipality

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3