X‐Ray Computed Tomography Meets Robust Chemometric Latent Space Modeling for Lean Meat Percentage Prediction in Pig Carcasses

Author:

Mishra Puneet1ORCID,Font‐i‐Furnols Maria2

Affiliation:

1. Food and Biobased Research Wageningen University and Research Wageningen The Netherlands

2. Food Quality and Technology IRTA Monells Spain

Abstract

ABSTRACTThis study presents a case of processing X‐ray computed tomography (CT) data for pork scans using chemometric latent space modeling. The distribution of voxel intensities is shown to exemplify a multivariate, multi‐collinear signal mixture. While this concept is not novel, it is revisited here from a chemometric perspective. To extract meaningful information from such multivariate signals, latent space modeling based on partial least squares (PLS) is an ideal solution. Furthermore, a robust PLS approach is even more effective for latent space modeling, as it can extract latent spaces unaffected by outliers, thereby enhancing predictive modeling. As an example, lean meat percentage is predicted using X‐ray CT data and robust PLS regression. This method is applicable to X‐ray CT quantification analysis, particularly in cases where unclear, erroneous, and outlying observations are suspected in the data.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3