Origin of the synergistic effects of bimetallic nanoparticles coupled with a metal oxide heterostructure for accelerating catalytic performance

Author:

Al Zoubi Wail1ORCID,Al Mahmud Abdullah2,Hazmatulhaq Farah1,Thalji Mohammad R.3ORCID,Leoni Stefano4,Kang Jee‐Hyun1,Ko Young Gun1

Affiliation:

1. Integrated Materials Chemistry Laboratory, School of Materials Science and Engineering Yeungnam University Gyeongsan Republic of Korea

2. School of Chemical Engineering Yeungnam University, 280 Daehak‐ro Gyeongsan, Gyeongbuk Republic of Korea

3. Korea Institute of Energy Technology (KENTECH), 200 Hyeokshin‐ro, Jeollanam‐do Naju Republic of Korea

4. Cardiff University, School of Chemistry CF10 3AT Cardiff United Kingdom

Abstract

AbstractPrecisely tuning bicomponent intimacy during reactions by traditional methods remains a formidable challenge in the fabrication of highly active and stable catalysts because of the difficulty in constructing well‐defined catalytic systems and the occurrence of agglomeration during assembly. To overcome these limitations, a PtRuPNiO@TiOx catalyst on a Ti plate was prepared by ultrasound‐assisted low‐voltage plasma electrolysis. This method involves the oxidation of pure Ti metal and co‐reduction of strong metals at 3000°C, followed by sonochemical ultrasonication under ambient conditions in an aqueous solution. The intimacy of the bimetals in PtRuPNiO@TiOx is tuned, and the metal nanoparticles are uniformly distributed on the porous titania coating via strong metal‒support interactions by leveraging the instantaneous high‐energy input from the plasma discharge and ultrasonic irradiation. The intimacy of PtRuPNiO@TiOx increases the electron density on the Pt surface. Consequently, the paired sites exhibit a high hydrogen evolution reaction activity (an overpotential of 220 mV at a current density of 10 mA cm−2 and Tafel slope of 186 mV dec−1), excellent activity in the hydrogenation of 4‐nitrophenol with a robust stability for up to 20 cycles, and the ability to contrast stated catalysts without ultrasonication and plasma electrolysis. This study facilitates industrially important reactions through synergistic chemical interactions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3