Influence of flexible segment length on the phase structure and properties of poly(hexamethylene 2,5‐furandicarboxylate)‐block‐biopolytetrahydrofuran copolymers

Author:

Paszkiewicz Sandra1ORCID,Walkowiak Konrad1ORCID,Irska Izabela1ORCID,Rozwadowski Zbigniew2ORCID,Dryzek Jerzy3ORCID

Affiliation:

1. Department of Materials Technologies West Pomeranian University of Technology Szczecin Poland

2. Department of Inorganic and Analytical Chemistry West Pomeranian University of Technology Szczecin Poland

3. Institute of Nuclear Physics PAS Cracow Poland

Abstract

AbstractTwo series of biobased poly(ether‐ester)s comprised of poly(hexamethylene 2,5‐furandicarboxylate) (PHF) as the rigid segments and biopolytetrahydrofuran (pTHF) with different molecular masses (1000 and 2000 g/mol) as the flexible segments were synthesized employing polycondensation in the molten state. The study mainly focuses on comparing these two series in terms of the length of the flexible segment. The content of pTHF segments in the copolymer chains varied from 25 to 75 wt.%. The molecular structure and composition, phase structure, and thermal and mechanical properties were characterized by nuclear magnetic resonance (1H NMR) and Fourier‐transformed infrared (FTIR) spectroscopies, differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and positron annihilation lifetime spectroscopy (PALS). In addition, mechanical performance and thermo‐oxidative and thermal stability have been investigated. Moreover, cyclic tensile properties were studied to evaluate the elastic properties. 1H NMR and FTIR spectroscopies demonstrate that the syntheses were correctly carried out, which made it possible to obtain the desired compositions of the block copolymers with high molecular masses. The decrease in Tm1, Tc1, and XcPHF values was visible, along with the increase in the flexible segment content. Moreover, the characteristic properties measured by PALS and the values of temperatures designated from TGA (inert and oxidizing atmosphere) did not vary between copolymer series PHF‐b‐F‐pTHF1000 and PHF‐b‐F‐pTHF2000. In turn, along with an increase in flexible segment content and the length of the pTHF, the values of tensile modulus, stress at break, and hardness decrease, while the value of elongation at break increases.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3