Downregulation of TRPM7, TRPM8, and TRPV1 channels modulate apoptotic parameters and neurodegenerative markers: Focus on neuronal differentiation and Parkinson's disease model

Author:

Öz Ahmi1ORCID,Çelik Ömer12ORCID

Affiliation:

1. Department of Biophysics, School of Medicine Süleyman Demirel University Isparta Turkey

2. Neuroscience Research Center Süleyman Demirel University Isparta Turkey

Abstract

AbstractThe transient receptor potential channel (TRP) channels are expressed in neuronal tissues and involved in neurological diseases such as pain, epilepsy, neuronal apoptosis, and neurodegenerative diseases. Formerly, we have investigated how neuronal differentiation changes TRP channels expression profile and how Parkinson's disease model is related with this expression levels. We have found that transient receptor potential channel melastatin subtype 7 (TRPM7), transient receptor potential channel melastatin subtype 8 and transient receptor potential channel vanilloid subtype 1 (TRPV1) channels have pivotal effects on differentiation and 1‐Methyl‐4‐phenylpyridinium (MPP+)‐induced Parkinson's disease model in SH‐SY5Y cells. In this study, we have investigated that downregulation of the TRP channels to evaluate how differentiation status changes to Parkinson's disease pathological hallmarks. We have also performed to other analyses to elucidate these TRP channels' function in MPP+‐induced neurotoxicity related apoptosis, cell viability, caspase 3 and 9 enzyme activities, intracellular reactive oxygen species production, mitochondrial depolarization levels, Ca2+ signaling, Alpha‐synuclein and Dopamine levels, mono amino oxidase A and B enzymatic activities, both in differentiated and undifferentiated neuronal cells. Herein we have concluded that especially TRPM7 and TRPV1 channels have distinct role in Parkinson's disease pathology via their activity changings in pathological state, and downregulation of these channels or specific antagonists can be useful for the possible treatment strategy for Parkinson's disease and related markers.

Funder

Süleyman Demirel Üniversitesi

Publisher

Wiley

Subject

Cell Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3