Improving performance of TPU by controlled crosslinking of soft segments

Author:

Barros Junior Lucivan P.1,de Souza Lucio R.1,Rahimzadeh Rasoul1ORCID,Manas‐Zloczower Ica1ORCID

Affiliation:

1. Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland Ohio USA

Abstract

AbstractThermoplastic polyurethanes (TPUs) are a family of thermoplastic elastomers with great properties such as high elongation and excellent chemical and abrasion resistance, which are processable by conventional melting methods. Nevertheless, TPUs lose mechanical properties and thermal stability at higher temperatures. In this work, we designed and synthesized a new TPU with limited crosslinking of the soft segments in order to improve its performance at high temperatures while preserving processability. Additionally, the new TPU maintains its transparency. With the incorporation of 10% trifunctional polyol, the Tg was increased by 7°C, the storage modulus at room temperature (25°C) was improved by 412 MPa (136%), the rubbery plateau was extended by 32°C and the thermal stability was enhanced by 4°C at T5. Moreover, the TPU with controlled crosslinking of the soft segments shows exceptional creep behavior both at room temperature and at 150°C, where the creep rate decreased by 80%. The new TPU shows limited decrease in tensile properties and can be processed by conventional thermoplastic processing techniques.Highlights Design and synthesis of a new TPU with limited crosslinking of the soft segments. Incorporation of the crosslinks into the soft segments preserves system processability. Enhanced mechanical and thermal properties while preserving system transparency. High temperature application window extended by 32°C. Creep rate at 150°C lowered by 80%.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3