Accessory ESCRT‐III proteins are conserved and selective regulators of Rab11a‐exosome formation

Author:

Marie Pauline P.1,Fan Shih‐Jung12,Mason John1,Wells Adam1,Mendes Cláudia C.1,Wainwright S. Mark1,Scott Sheherezade1,Fischer Roman3,Harris Adrian L.4,Wilson Clive1,Goberdhan Deborah C. I.1

Affiliation:

1. Department of Physiology Anatomy and Genetics University of Oxford Oxford UK

2. Department of Life Sciences National Central University Taoyuan City Taiwan

3. Target Discovery Institute University of Oxford Oxford UK

4. Department of Oncology University of Oxford Oxford UK

Abstract

AbstractExosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7‐positive multivesicular endosomes, and also in recycling Rab11a‐positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV‐mediated destruction of ubiquitinylated cargos. Accessory ESCRT‐III components have reported roles in ESCRT‐III‐mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT‐III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a‐enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a‐exosome production. Accessory ESCRT‐III knockdown suppresses seminal fluid‐mediated reproductive signalling by secondary cells and the growth‐promoting activity of Rab11a‐exosome‐containing EVs from HCT116 cells. We conclude that accessory ESCRT‐III components have a specific, ubiquitin‐independent role in Rab11a‐exosome generation, a mechanism that might be targeted to selectively block pro‐tumorigenic activities of these vesicles in cancer.

Funder

Cancer Research UK

Wellcome

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Subject

Cell Biology,Histology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3