Analysis of CFRP inter‐laminar cracking location under laser impacts

Author:

Song Yuheng1,Qu Meijiao1ORCID,He Weifeng234,Zhu Hanrui1,Liu Kai1

Affiliation:

1. Mechanical and Electrical Engineering Xi'an Polytechnic University Xi'an China

2. National Key Lab of Aerospace Power System and Plasma Technology Air Force Engineering University Xi'an China

3. Institute of Aeronautics Engine, School of Mechanical Engineering Xi'an Jiaotong University Xi'an China

4. National Key Lab of Aerospace Power System and Plasma Technology Xi'an Jiaotong University Xi'an China

Abstract

AbstractIn this study, a combination of theoretical analysis and experimental verification was used to investigate the effects of laser parameters and shock wave shape on the location of layer cracks in carbon fiber‐reinforced plastics specimens. Firstly, the propagation coupling process of trapezoidal, rectangular, and triangular pulses in the material was investigated based on the one‐dimensional stress wave propagation theory. The study analyzed the effects of shock wave pressure amplitude, pulse width, and other factors on the location of layer cracks in the material. Subsequently, laser impact experiments with varying energies and pulse widths were conducted on specimens of different thicknesses to investigate the impact of shock wave pressure amplitude and laser pulse width on the location of layer cracking. The results show that the theoretical analysis of triangular shock waves has broader applicability and can serve as a representative analytical model to describe single‐layer crack damage.Highlights Laser impact experiments with various specimen thicknesses. Laser pulse width determines the initial location of inter‐laminar cracking. The applicability of the triangular pulsed layer cracking formula. The effect of laser energy on pulse amplitude.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3