High‐intensity bird migration along Alpine valleys calls for protective measures against anthropogenically induced avian mortality

Author:

Hirschhofer Simon12ORCID,Liechti Felix2,Ranacher Peter1,Weibel Robert1,Schmid Baptiste2

Affiliation:

1. Department of Geography University of Zurich Zurich Switzerland

2. Swiss Ornithological Institute Lucerne Switzerland

Abstract

AbstractThe Alps are a natural barrier for avian broad‐front migration in Central Europe. While most birds that approach the Alps are deflected and circumvent the mountains, some choose to make the crossing. Here, they are funnelled and channelled in valleys, leading to high bird densities. Many Alpine valleys are suitable locations for wind farms, potentially creating a conflict between wind energy production and bird conservation. Collisions can be reduced by temporarily shutting down wind turbines. This however requires timely coordination, either by locally monitoring migration intensity or by extrapolating and forecasting migratory fluxes from other sites. However, little is known about the timing and intensity of bird migration in valleys of the central Alps, especially during spring migration. This study presents a 2‐year quantification of avian migration across the Alps. We collected terrestrial radar data at three sites: two located in Alpine valleys and one in the lowland, close to the northern foothills of the Alps. We found high migration traffic rates (MTR) during both migration seasons in the Alpine valleys, with outstanding numbers of migrants during the spring season. The strong alignment of the flight directions with the main orientation of alpine valleys highlights the importance of valleys and the connected passes in channelling migratory fluxes through the Alps. However, extrapolating migration intensities and forecasting peak migration events for inner Alpine sites is difficult, likely due to how migratory patterns and activity are influenced by the complexity of the local topography and the associated dynamic wind and weather conditions. Instead, we call for year‐round on‐site monitoring of migration intensities and strategies tailored to the local context to reduce the risk of bird strikes at wind turbines in the Alps.

Publisher

Wiley

Reference73 articles.

1. Agostinelli C.&Lund U.(2023)R package “circular”: circular statistics.https://CRAN.R‐project.org/package=circular

2. Bird collisions at wind turbines in a mountainous area related to bird movement intensities measured by radar

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3