A New Mixture Model With Cure Rate Applied to Breast Cancer Data

Author:

Gallardo Diego I.1,Brandão Márcia2,Leão Jeremias2ORCID,Bourguignon Marcelo3ORCID,Calsavara Vinicius4

Affiliation:

1. Departamento de Estadística Facultad de Ciencias Universidad del Bío‐Bío Concepción Chile

2. Departamento de Estatística Universidade Federal do Amazonas Manaus Brazil

3. Departamento de Estatística Universidade Federal do Rio Grande do Norte Natal Brazil

4. Department of Computational Biomedicine Cedars‐Sinai Medical Center Los Angeles California USA

Abstract

ABSTRACTWe introduce a new modelling for long‐term survival models, assuming that the number of competing causes follows a mixture of Poisson and the Birnbaum‐Saunders distribution. In this context, we present some statistical properties of our model and demonstrate that the promotion time model emerges as a limiting case. We delve into detailed discussions of specific models within this class. Notably, we examine the expected number of competing causes, which depends on covariates. This allows for direct modeling of the cure rate as a function of covariates. We present an Expectation‐Maximization (EM) algorithm for parameter estimation, to discuss the estimation via maximum likelihood (ML) and provide insights into parameter inference for this model. Additionally, we outline sufficient conditions for ensuring the consistency and asymptotic normal distribution of ML estimators. To evaluate the performance of our estimation method, we conduct a Monte Carlo simulation to provide asymptotic properties and a power study of LR test by contrasting our methodology against the promotion time model. To demonstrate the practical applicability of our model, we apply it to a real medical dataset from a population‐based study of incidence of breast cancer in São Paulo, Brazil. Our results illustrate that the proposed model can outperform traditional approaches in terms of model fitting, highlighting its potential utility in real‐world scenarios.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado do Amazonas

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3