Recent development of pH‐responsive theranostic nanoplatforms for magnetic resonance imaging‐guided cancer therapy

Author:

Li Xu1,Yue Renye1,Guan Guoqiang1,Zhang Cheng1,Zhou Ying1,Song Guosheng1ORCID

Affiliation:

1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University Changsha P. R. China

Abstract

AbstractThe acidic characteristic of the tumor site is one of the most well‐known features and provides a series of opportunities for cancer‐specific theranostic strategies. In this regard, pH‐responsive theranostic nanoplatforms that integrate diagnostic and therapeutic capabilities are highly developed. The fluidity of the tumor microenvironment (TME), with its temporal and spatial heterogeneities, makes noninvasive molecular magnetic resonance imaging (MRI) technology very desirable for imaging TME constituents and developing MRI‐guided theranostic nanoplatforms for tumor‐specific treatments. Therefore, various MRI‐based theranostic strategies which employ assorted therapeutic modes have been drawn up for more efficient cancer therapy through the raised local concentration of therapeutic agents in pathological tissues. In this review, we summarize the pH‐responsive mechanisms of organic components (including polymers, biological molecules, and organosilicas) as well as inorganic components (including metal coordination compounds, metal oxides, and metal salts) of theranostic nanoplatforms. Furthermore, we review the designs and applications of pH‐responsive theranostic nanoplatforms for the diagnosis and treatment of cancer. In addition, the challenges and prospects in developing theranostic nanoplatforms with pH‐responsiveness for cancer diagnosis and therapy are discussed.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3