High‐Temperature Polymer Electrolyte Fuel Cells Based on Protic Ionic Liquids

Author:

Rodenbücher Christian1ORCID,Korte Carsten1,Chen Yingzhen1,Wippermann Klaus1,Kowalski Piotr M.23,Kim Sangwon4,Kim Jungtae4,Hempelmann Rolf4,Kim BeomJun5

Affiliation:

1. Institute of Energy Technologies (IET‐4) – Electrochemical Process Engineering Forschungszentrum Jülich GmbH Jülich Germany

2. Institute of Energy Technologies (IET‐3) – Theory and Computation of Energy Materials Forschungszentrum Jülich GmbH Jülich Germany

3. JARA Energy and Center for Simulation and Data Science (CSD) Jülich Aachen Research Alliance Jülich Germany

4. KIST Europe and Transfercenter Sustainable Electrochemistry Saarland University Saarbrücken Germany

5. Fuel Cell Research & Demonstration Center Korea Institute of Energy Research (KIER) Buan Jeollabuk‐do Republic of Korea

Abstract

ABSTRACTA hydrogen‐based energy system will be the backbone of a future energy grid using renewable energies. It is widely accepted that polymer electrolyte membrane fuel cells (PEMFCs) are promising converters of chemical energy stored as hydrogen into electrical energy. An increase of the operation temperature from below 80°C to above about 160°C is considered beneficial, as it would allow for much simpler water management and the use of waste heat. Here, we are investigating protic ionic liquids (PILs) immobilized in a polybenzimidazole polymer as electrolytes for high‐temperature PEMFCs. Ionic liquids are promising for fuel cell applications as they provide high thermal and chemical stability and high proton conductivity. In contrast to aqueous electrolytes, ionic liquids form a dense layered structure at the electrode–electrolyte interface that depends on the potential and on the content of residual water in the electrolyte. We investigate how PILs interact with the host polymer of the membrane revealing that porous polymer structures can be formed by solution casting, which allows for an encapsulation of the ionic liquid within the pores. After doping the polymer with small amounts of phosphoric acid, the membranes showed reasonable conductivity and fuel cell performance.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3