Affiliation:
1. Faculty of Chemical Sciences Benemeritus Autonomous University of Puebla Puebla Puebla Mexico
2. Department of Reproductive Biology and Toxicology Institute of Sciences. Benemeritus Autonomous University of Puebla Puebla Puebla Mexico
3. Institute of Physiology Benemeritus Autonomous University of Puebla Puebla Puebla Mexico
4. Faculty of Medicine, Department of Biochemistry National Autonomous University of Mexico Mexico City Mexico
Abstract
AbstractNeurological disorders (NDs) are diseases of the central and peripheral nervous systems that affect more than one billion people worldwide. The risk of developing an ND increases with age due to the vulnerability of the different organs and systems to genetic, environmental, and social changes that consequently cause motor and cognitive deficits that disable the person from their daily activities and individual and social productivity. Intrinsic factors (genetic factors, age, gender) and extrinsic factors (addictions, infections, or lifestyle) favor the persistence of systemic inflammatory processes that contribute to the evolution of NDs. Neuroinflammation is recognized as a common etiopathogenic factor of ND. The study of new pharmacological options for the treatment of ND should focus on improving the characteristic symptoms and attacking specific molecular targets that allow the delay of damage processes such as neuroinflammation, oxidative stress, cellular metabolic dysfunction, and deregulation of transcriptional processes. In this review, we describe the possible role of sodium phenylbutyrate (NaPB) in the pathogenesis of Alzheimer's disease, hepatic encephalopathy, aging, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis; in addition, we describe the mechanism of action of NaPB and its beneficial effects that have been shown in various in vivo and in vitro studies to delay the evolution of any ND.
Funder
Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献