Predictive Model of Endodontic Access in Maxillary Central Incisors Using Cone Beam Computed Tomography

Author:

Llacer‐Martínez Maria1,Sanz María T.2ORCID,Jovani‐Sancho Mar1,Biedma Benjamín Martín3,Radford Elisabet Palazón1

Affiliation:

1. Departamento de Odontología, Facultad de Ciencias de la Salud Universidad Cardenal Herrera‐CEU Valencia Spain

2. Departamento de Didáctica Matemática Universidad de Valencia Valencia Spain

3. Departamento de Cirugía y Especialidades Médico‐Quirúrgicas Universidad de Santiago de Compostela Santiago de Compostela Spain

Abstract

ABSTRACTRoot canal access is essential for successful root canal treatment, yet it poses significant risks in teeth with calcified or constricted canals, such as root perforation or excessive loss of healthy dentin. The aim of this study was to develop a predictive model that could guide the design of a conservative, accurate endodontic access in maxillary central incisors using cone beam computed tomography (CBCT). In this retrospective cross‐sectional study, CBCT scans from 135 maxillary central incisors were analyzed to obtain anatomical and demographic data. Twenty‐four variables significantly correlated with three key aspects of access design—access starting point, depth to the pulp horn, and access angle (target variables). Mathematical functions were formulated using non‐linear regression, and the resultant model was validated for the three target variables with a new set of 18 maxillary central incisors (R2 > 0.68, W > 0.90). The results showed that age, tooth length, and specific CBCT‐derived parameters, such as starting point, angle, and depth, which are related to the tooth's access opening, strongly influenced the predicted access cavity parameters. This predictive model has the potential to be integrated into dynamic navigation software, optimizing endodontic access and reducing iatrogenic errors for practitioners.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3