Significantly enhanced ion‐migration and sodium‐storage capability derived by strongly coupled dual interfacial engineering in heterogeneous bimetallic sulfides with densified carbon matrix

Author:

Zhao Wenxi12,Ma Xiaoqing1,Wang Guangzhao1,Tan Linglin1,Wang Xinqin3,He Xun2,Wang Yan2,Luo Yongsong4,Zheng Dongdong4,Sun Shengjun4,Liu Qian5,Li Luming5,Chu Wei5,Sun Xuping24ORCID

Affiliation:

1. School of Electronic Information Engineering Yangtze Normal University Fuling Chongqing China

2. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu Sichuan China

3. School of Electronic Engineering Lanzhou City University Lanzhou Gansu China

4. College of Chemistry Chemical Engineering and Materials Science Shandong Normal University Jinan Shandong China

5. Institute for Advanced Study Chengdu University Chengdu Sichuan China

Abstract

AbstractThe development of highly efficient sodium‐ion batteries depends critically on the successful exploitation of advanced anode hosts that is capable of overcoming sluggish reaction kinetics while also withstanding severe structural deformation triggered by the large radius of Na+‐insertion. Herein, a hierarchically hybrid material with hetero‐Co3S4/NiS hollow nanosphere packaged into a densified N‐doped carbon matrix (Co3S4/NiS@N‐C) was designed and fabricated utilizing CoNi‐glycerate as the self‐sacrifice template, making the utmost of the synergistic effect of hetero‐Co3S4/NiS with strong electric field and rich reaction active‐sites together with the densified outer‐carbon scaffolds with remarkable electronic conductivity and robust mechanical toughness. As anticipated, as‐fabricated Co3S4/NiS@N‐C anode affords remarkable specific capacity, prolonged cycle lifespan up to 2 400 cycles with an only 0.05% fading each cycle at 20.0 A g−1, and excellent rate feature (354.9 mAh g−1 at 30.0 A g−1), one of the best performances for most existing Co3S4/NiS‐based anodes. Ex situ structural characterizations in tandem with theoretical analysis demonstrate the reversible insertion‐conversion mechanism of initially proceeding with Na+ de‐/intercalation and superior heterogeneous interfacial reaction behavior with strong Na+‐adsorption ability. Further, sodium‐ion full cell and hybrid capacitor based on Co3S4/NiS@N‐C anode exhibit impressive electrochemical characteristics on cycling performance and rate capability, showcasing its outstanding feasibility toward practical use.

Funder

Natural Science Foundation of Chongqing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3