Protein isolates made in the laboratory versus the factory: A case study with mung bean and chickpea

Author:

Loveday Simon M.12ORCID,Halim Celyne3

Affiliation:

1. Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food Werribee Victoria Australia

2. Riddet Institute Centre of Research Excellence Massey University Palmerston North New Zealand

3. Singapore Institute of Food and Biotechnology Innovation (SIFBI) Agency for Science, Technology and Research (A*STAR) Singapore Singapore

Abstract

AbstractProtein isolates deliver functionalities such as gelling, emulsifying, and foaming, and many recent publications are reporting the functionality of new protein isolates produced in the laboratory. Laboratory protein isolation processes are quite different to industrial processes, and therefore isolate functionalities are likely to be different. We examined some of the differences between laboratory isolates and commercial isolates of mung bean and chickpea protein (MPBI and CPPI). We tested solubility as a function of pH, dispersibility by static light scattering, and viscosity enhancement in a rapid visco analyzer (RVA). Thermal transitions were evaluated with differential scanning calorimetry (DSC), and powder morphology was examined by scanning electron microscopy (SEM). Laboratory isolates were more soluble (e.g. 54%–57% vs. 5%–45% at pH 8) and dispersible than commercial isolates, with the largest DSC endotherms, indicating the least denaturation. Among commercial isolates, we found large differences in solubility, thermal properties, and viscosity enhancement, and minor differences in dispersibility and powder morphology. The hydration protocol had a strong effect on solubility and DSC results, and a moderate effect on RVA results. Comparisons between isolates produced in different laboratories are currently hampered by the use of nonstandard empirical methods for certain functionalities, and we highlight standardized methods for measuring dispersibility and viscosity enhancement. Protein isolation processes affect isolate functionality via effects on protein denaturation and aggregation, and via the morphology and surface chemistry of isolate powders. This means that findings with laboratory isolates cannot necessarily be extrapolated to commercial counterparts but also indicates the power of process design to modulate isolate functionality.

Funder

Singapore Institute of Food and Biotechnology Innovation

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3