Effect of core densities on quasi‐static and low‐velocity impact behaviors of AFRP‐aluminum foam hybrid sandwich beams

Author:

Wang Zhen123ORCID,Hong Bin4,Xian Guijun123ORCID,Xin Meiyin5,Huang Shengde5,Shen Haijuan5

Affiliation:

1. Key Lab of Structures Dynamic Behavior and Control (Harbin Institute of Technology) Ministry of Education Harbin China

2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology Harbin Institute of Technology Harbin China

3. School of Civil Engineering Harbin Institute of Technology Harbin China

4. School of Transportation Science and Engineering Harbin Institute of Technology Harbin P. R. China

5. Sinopec Shanghai Petrochemical Co., Ltd Acrylic Fiber Division Shanghai China

Abstract

AbstractThe hybrid sandwich structures possessing composite faces and an aluminum foam (ALF) core exhibit lightweight and superior impact resistance. However, limited studies pay attention to the mechanical behavior of hybrid sandwich beams with various ALF densities. The present article has focused on the influence of foam densities on the quasi‐static and low‐velocity impact (LVI) behaviors of hybrid sandwich beams with aramid‐fiber‐reinforced polymer (AFRP) faces and ALF core. The failure mode, loading response, and energy absorption of sandwich beams have been obtained experimentally and the failure map with a wide range of dimensional configurations has been established theoretically. Increasing core density significantly enhances the load‐carrying capacity of the sandwich beam, and the enhanced effect becomes more obvious for a thicker core. The medium‐density ALFs provide the maximum specific energy absorption, while the high‐density ALFs offer the highest energy absorption for hybrid sandwich beams. The applicability of core densities in hybrid sandwich structures is provided.Highlights Normal strain distribution under quasi‐static loading is analyzed using DIC. AFRP face microbuckling provides higher impact resistance than core failure. The applicability of core density in hybrid sandwich structures is given.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3