The Optimization of Stand Structure Can Significantly Alleviate the Flammability of Forest Ecosystems

Author:

Zhang Yan1,Deng Xiangwen123ORCID,He Xiaoyong4,Zhang Xiaolong4,Huang Zhihong123,Chen Liang123ORCID,Ouyang Shuai123,Xiang Wenhua123ORCID

Affiliation:

1. College of Life and Environmental Sciences Central South University of Forestry and Technology Changsha Hunan Province China

2. Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province Huitong China

3. National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China Changsha China

4. Forestry Bureau of Shaoyang County Shaoyang China

Abstract

ABSTRACTThe accurate classification of forest fuels and the evaluation of the flammability of different forest types are crucial for effective forest fire control and classification management. We aimed to evaluate and classify the flammability of surface forest fuels in the subtropical area of China. The surface forest fuels were collected from 12 typical forest types. The flammability of surface forest fuels was assessed by evaluating their drying time, fuel moisture, ignition point, calorific value, combustion duration, and ash content. The principal component analysis (PCA), entropy weight method, k‐means clustering algorithm, and Pearson correlation coefficient method were employed for the classification of forest fuels and the evaluation of forest flammability. The results revealed that the flammability of surface living fuels across diverse plant families was significantly different. Rutaceae and Cucurbitaceae plants exhibited relatively high flammability, while Arecaceae plants demonstrated characteristics of low flammability. The surface fuels could be categorized into high, moderate, and low flammability. The high flammability fuels mainly consisted of plant leaves and litter components. The forest humus belongs to the low flammability. The forest flammability was classified into three categories according to the ignition forest fire risk index (IRI) and the burning intensity & severity index (BSI). The highest flammability forest types were EPF: Pinus elliottii pure forest, BMF: broad‐leaved mixed forest, CPF: Cunninghamia lanceolata (Lamb.) Hook pure forest, and CBF: coniferous broad‐leaved mixed forest. The lowest flammability was in FPF: Liquidambar formosana Hance pure forest, an optimal forest type with a neatly structured environment, few understory weeds, and less dead fuel loading of only 4.32 tons per hectare. The flammability index method presented in this study contains the key elements of flammability, provides a standardized tool for fire managers to assess and mitigate fire risk, and it also applies to other regions.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3