Development of polyamide/polyacrylonitrile thin film composite RO membranes by interfacial polymerization assisted with an aromatic/aliphatic organic solvent mixture

Author:

Mokarinezhad Nikan1,Hosseini Seyed Saeid12ORCID,Nxumalo Edward Ndumiso2ORCID

Affiliation:

1. Membrane Science and Technology Research Group, Department of Chemical Engineering Tarbiat Modares University Tehran Iran

2. Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology University of South Africa Johannesburg South Africa

Abstract

AbstractThe proper control of polymerization is a prerequisite in fabrication of thin film composite reverse osmosis (RO) membranes. But it not trivial when hydrophilic substrates are used. Herein, we report an innovative approach which involves using an aromatic/aliphatic solvent mixture of toluene and n‐hexane as the organic phase for interfacial polymerization. Membranes were tuned by using a customized developed polyacrylonitrile (PAN) substrate and exploring the impacts of organic solvent and curing temperatures on their morphology and performance characteristics. Results revealed that increasing the temperature of organic phase to 20°C improved salt rejection significantly to 98.6% with the flux of 16.1 LMH. However, its further increase to 30°C was not beneficial due to formation of a looser chain packing which led to rejection drop. In addition, raising curing temperature to 90°C was not favorable due to transformation of surface morphology from ridge‐and‐valley to nodular structure, accompanied with defective sites at the selective layer and insufficient degree of crosslinking evidenced by declines in both flux and rejection to 11.1 LMH and 83.4%, respectively. Overall, the findings suggested that an optimal performance could be obtained by using a solvent mixture of toluene/n‐hexane (1,1) and setting organic solvent and curing temperatures to 20 and 70°C, respectively.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3