Predicting the glass transition temperature and solubility parameter between rubber/silica and rubber/resins via all‐atom molecular dynamics simulation

Author:

Chen Qionghai123,Zhang Ziyi123,Huang Wanhui123,Qu JiaJun123,Zhang Qi123,Wu Xiaohui123,Zhang Liqun123,Liu Jun123ORCID

Affiliation:

1. Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials Beijing University of Chemical Technology Beijing China

2. Beijing Engineering Research Center of Advanced Elastomers Beijing University of Chemical Technology Beijing China

3. State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing China

Abstract

AbstractResin is a widely used additive in rubber composites, which not only improves the processing properties of the composites but also enhances their mechanical properties, rolling resistance and wear resistance. However, there are specific differences in compatibility among resin, rubber and silica, which directly affect the performance of the composite materials. In this work, we first computed the glass transition temperature () of five resins in styrene−butadiene rubber (SBR) composites to prove the reliability of the computational method. Then, we explored the effects of different components and resin types on of SBR and found that the addition of silica can increase due to weak attractive interactions between silica and rubber molecular chains, which restrict the movement of the molecular chains. Furthermore, using solubility parameters, we analyzed the compatibility of rubber and five different resins and found that all five resins had good compatibility with rubber, especially C5/C9 copolymerized petroleum resin and hydrogenated resin. Finally, we revealed that there is a mutually attractive force between resin and silica. In summary, understanding the interactions among resins, silica and rubber is crucial for optimizing the performance of composite materials. © 2024 Society of Chemical Industry.

Funder

International Science and Technology Cooperation Programme

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3