Helicity of a tardigrade disordered protein contributes to its protective function during desiccation

Author:

Biswas Sourav1ORCID,Gollub Edith23,Yu Feng23,Ginell Garrett45,Holehouse Alex45,Sukenik Shahar23,Boothby Thomas C.1ORCID

Affiliation:

1. Department of Molecular Biology University of Wyoming Laramie Wyoming USA

2. Department of Chemistry and Biochemistry University of California, Merced Merced California USA

3. Quantitative Systems Biology Program University of California Merced Merced California USA

4. Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis Missouri USA

5. Center for Biomolecular Condensates Washington University in St. Louis St. Louis Missouri USA

Abstract

AbstractTo survive extreme drying (anhydrobiosis), many organisms, spanning every kingdom of life, accumulate intrinsically disordered proteins (IDPs). For decades, the ability of anhydrobiosis‐related IDPs to form transient amphipathic helices has been suggested to be important for promoting desiccation tolerance. However, evidence empirically supporting the necessity and/or sufficiency of helicity in mediating anhydrobiosis is lacking. Here, we demonstrate that the linker region of CAHS D, a desiccation‐related IDP from the tardigrade Hypsibius exemplaris, that contains significant helical structure, is the protective portion of this protein. Perturbing the sequence composition and grammar of the linker region of CAHS D, through the insertion of helix‐breaking prolines, modulating the identity of charged residues, or replacement of hydrophobic amino acids with serine or glycine residues results in variants with different degrees of helical structure. Importantly, correlation of protective capacity and helical content in variants generated through different helix perturbing modalities does not show as strong a trend, suggesting that while helicity is important, it is not the only property that makes a protein protective during desiccation. These results provide direct evidence for the decades‐old theory that helicity of desiccation‐related IDPs is linked to their anhydrobiotic capacity.

Funder

National Science Foundation

National Institute of Food and Agriculture

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3