State transition of macroscopic supramolecular hydrogel by the host‐guest coverage effect

Author:

Liu Yizhe12,Wu Yang123ORCID,Feng Kai2,Liu Hui4,Qin Chenxi1,Cai Meirong1,Pei Xiaowei12,Zhou Feng1

Affiliation:

1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou Gansu China

2. Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai Yantai Shandong China

3. Qingdao Centre of Resource Chemistry and New Materials Qingdao Shandong China

4. School of Chemistry and Chemical Engineering Shandong University of Technology Zibo Shandong China

Abstract

AbstractIn this work, a hydrophobic guest monomer containing adamant end‐group was synthesized and introduced into the acrylamide hydrogel system to prepare macroscopic guest hydrogel. The swelling, transparency, and mechanical properties of the guest hydrogels can be significantly changed by soaking the guest hydrogel into hydrophilic cyclodextrin solution because the hydrophobic guest groups were recognized and covered by the hydrophilic host molecules. In addition, the surface lubrication property could be adjusted by changing the proportion of acrylamide and adamantane monomers in the hydrogel system. More importantly, cyclodextrin can bind with adamantane through host‐guest interactions, enabling the adjustment of the hydrophilicity/hydrophobicity properties of the hydrogel system. By controlling the assembly time, the hydrogel with different lubrication behaviors can be obtained. The controllable surface friction that this specific binding of host‐guest interaction has broad application prospects in intelligent device, bionic lubrication and other fields.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3