Dual Inhibition of Src and GSK3 Maintains Mouse Embryonic Stem Cells, Whose Differentiation Is Mechanically Regulated by Src Signaling

Author:

Shimizu Takeshi1,Ueda Jun23,Ho Jolene Caifeng2,Iwasaki Katsuhiko4,Poellinger Lorenz2,Harada Ichiro4,Sawada Yasuhiro156

Affiliation:

1. Mechanobiology Institute of Singapore,National University of Singapore, Singapore, Singapore

2. Cancer Biology Program, Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, NUS Yong Loo Lin School of Medicine, Singapore, Singapore

3. Center for Genetic Analysis of Biological Responses, Research Institute for Microbial Diseases, Osaka University, Yamadaoka, Suita-City, Osaka, Japan

4. Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama, Japan

5. Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore

6. Department of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore

Abstract

Abstract Recent studies reveal that the mechanical environment influences the behavior and function of various types of cells, including stem cells. However, signaling pathways involved in the mechanical regulation of stem cell properties remain largely unknown. Using polyacrylamide gels with varying Young's moduli as substrates, we demonstrate that mouse embryonic stem cells (mESCs) are induced to differentiate on substrates with defined elasticity, involving the Src-ShcA-MAP kinase pathway. While the dual inhibition of mitogen-activated protein (MAP) kinase and glycogen synthase kinase 3 (GSK3), termed “2i,” was reported to sustain the pluripotency of mESCs, we find it to be substrate elasticity dependent. In contrast, Src inhibition in addition to 2i allows mESCs to retain their pluripotency independent of substrate elasticity. The alternative dual inhibition of Src and GSK3 (“alternative 2i”) retains the pluripotency and self-renewal of mESCs in vitro and is instrumental in efficiently deriving mESCs from preimplantation mouse embryos. In addition, the transplantation of mESCs, maintained under the alternative 2i condition, to immunodeficient mice leads to the formation of teratomas that include differentiation into three germ layers. Furthermore, mESCs established with alternative 2i contributed to chimeric mice production and transmitted to the germline. These results reveal a role for Src-ShcA-MAP kinase signaling in the mechanical regulation of mESC properties and indicate that alternative 2i is a versatile tool for the maintenance of mESCs in serum-free conditions as well as for the derivation of mESCs.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3