Exploring the tribological impact of micaceous additives in copper‐free automobile brake friction composites

Author:

Sathyamoorthy G.1,Raghunathan Vijay2ORCID,Rangappa Sanjay Mavinkere2ORCID,Siengchin Suchart2,Singaravelu D. Lenin1ORCID

Affiliation:

1. Department of Production Engineering National Institute of Technology Tiruchirappalli Tamil Nadu India

2. Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai‐German Graduate School of Engineering (TGGS) King Mongkut's University of Technology, North Bangkok (KMUTNB) Bangkok Thailand

Abstract

AbstractThis study investigates the tribological impact of incorporating micaceous additives in copper‐free brake friction composites for automotive applications. Four brake pad formulations were created, each containing different amounts of muscovite and phlogopite, ranging from 0% to 10% by weight. A brake pad comparison was conducted by replacing mica with synthetic barites. The physical, thermal, mechanical, and chemical properties of the fabricated brake friction composite were examined. Tribological features were evaluated through inertia brake dynamometer testing following the JASO‐C‐406 schedule. Scanning electron microscope (SEM) analysis delved into contact plateau formations and back transfer patches on the brake pad's surfaces. Notably, phlogopite‐based pads exhibited enhanced thermal stability and efficient heat dissipation, contributing to sustained tribological performance. Overall, the comprehensive evaluation using the multiple objective optimization by ratio analysis (MOORA) method positioned phlogopite‐based brake pads as the optimal choice for optimized braking performances.Highlights Exploration of micaceous additives as an ingredient in brake friction composite. Phlogopite‐based brake pads showed better fade and recovery performance. Phlogopite‐based brake pads exhibited low pad wear and rotor wear. MOORA optimization positioned phlogopite‐based brake pads as the optimal choice.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3