π‐Conjugated Polymers Incorporating a Novel Planar Quinoid Building Block with Extended Delocalization and High Charge Carrier Mobility

Author:

Kim Yunseul1,Hwang Hansu1,Kim Nam‐Koo2,Hwang Kyoungtae1,Park Jong‐Jin1,Shin Ga‐In1,Kim Dong‐Yu1ORCID

Affiliation:

1. Heeger Center for Advanced Materials (HCAM) Research Institute for Solar and Sustainable Energies (RISE) School of Materials Science and Engineering (SMSE) Gwangju Institute of Science and Technology (GIST) Gwangju 61005 Republic of Korea

2. Materials & Devices Advanced Research Institute LG Electronics Seoul 07796 Republic of Korea

Abstract

AbstractTwo novel conjugated polymers incorporating quinoidal thiophene are successfully synthesized. By combining 1D nuclear magnetic resonance (NMR) and 2D nuclear Overhauser effect spectroscopy analyses, the isomeric form of the major quinoid monomer is clearly identified as the asymmetric Z, E‐configuration. The quinoidal polymers are synthesized via Stille polymerization with thiophene or bithiophene. Both quinoidal polymers exhibit the low band gap of 1.45 eV and amphoteric redox behavior, indicating extended conjugation owing to the quinoidal backbone. These quinoidal polymers show ambipolar behaviors with high charge carrier mobilities when applied in organic field‐effect transistors. In addition, the radial alignment of polymer chains achieved by off‐center spin‐coating leads to further improvement of device performance, with poly(quinoidal thiophene–bithiophene) exhibiting a high hole mobility of 8.09 cm2 V−1 s−1, which is the highest value among the quinoidal polymers up to now. Microstructural alteration via thermal annealing or off‐center spin‐coating is found to beneficially affect charge transport. The enhancement of crystallinity with strong π–π interactions and the nanofibrillar structure arising from planar well‐delocalized quinoid units is considered to be responsible for the high charge carrier mobility.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3