Resonance‐Enhanced Absorption in Hollow Nanoshell Spheres with Omnidirectional Detection and High Responsivity and Speed

Author:

Lien Der‐Hsien1,Dong Zhenghong2,Retamal Jose Ramon Duran1,Wang Hsin‐Ping1,Wei Tzu‐Chiao1,Wang Dan23,He Jr‐Hau1ORCID,Cui Yi45

Affiliation:

1. Electrical Engineering Program King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia

2. State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences P.O. Box 353 Beijing 100190 China

3. Centre for Clean Environment and Energy Griffith University Gold Coast Queensland 4222 Australia

4. Department of Materials Science and Engineering Stanford University Stanford CA 94305 USA

5. Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

Abstract

AbstractOptical resonance formed inside a nanocavity resonator can trap light within the active region and hence enhance light absorption, effectively boosting device or material performance in applications of solar cells, photodetectors (PDs), and photocatalysts. Complementing conventional circular and spherical structures, a new type of multishelled spherical resonant strategy is presented. Due to the resonance‐enhanced absorption by multiple convex shells, ZnO nanoshell PDs show improved optoelectronic performance and omnidirectional detection of light at different incidence angles and polarization. In addition, the response and recovery speeds of these devices are improved (0.8 and 0.7 ms, respectively) up to three orders of magnitude faster than in previous reports because of the existence of junction barriers between the nanoshells. The general design principles behind these hollow ZnO nanoshells pave a new way to improve the performance of sophisticated nanophotonic devices.

Funder

King Abdullah University of Science and Technology

Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Wiley

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3