A pH‐responsive nanoparticle delivery system containing dihydralazine and doxorubicin‐based prodrug for enhancing antitumor efficacy

Author:

Zhang Lianxue12,Huang Jianxiang1,Buratto Damiano1,Han Panli2,Yang Zaixing12ORCID,Zhou Ruhong134ORCID

Affiliation:

1. Institute of Quantitative Biology Shanghai Institute for Advanced Study College of Life Sciences Zhejiang University Hangzhou China

2. State Key Laboratory of Radiation Medicine and Protection School for Radiological and Interdisciplinary Sciences (RAD‐X), Soochow University Suzhou China

3. Cancer Center Zhejiang University Hangzhou China

4. Department of Chemistry Columbia University New York New York USA

Abstract

AbstractThe efficacy of nanoparticle (NP)‐based drug delivery technology is hampered by aberrant tumor stromal microenvironments (TSMs) that hinder NP transportation. Therefore, the promotion of NP permeation into deep tumor sites via the regulation of tumor microenvironments is of critical importance. Herein, we propose a potential solution using a dihydralazine (HDZ)‐loaded nanoparticle drug delivery system containing a pH‐responsive, cyclic RGD peptide‐modified prodrug based on doxorubicin (cRGD‐Dex‐DOX). With a combined experimental and theoretical approach, we find that the designed NP system can recognize the acid tumor environments and precisely release the encapsulated HDZ into tumor tissues. HDZ can notably downregulate the expression levels of hypoxia‐inducible factor 1α (HIF1α), α‐smooth muscle actin, and fibronectin through the dilation of tumor blood vessels. These changes in the TSMs enhance the enrichment and penetration of NPs and also unexpectedly promote the infiltration of activated T cells into tumors, suggesting that such a system may offer an effective “multifunctional therapy” through both improving the chemotherapeutic effect and enhancing the immune response to tumors. In vivo experiments on 4T1 breast cancer bearing mice indeed validate that this therapy has the most outstanding antitumor effects over all the other tested control regimens, with the lowest side effects as well.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

General Medicine,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3