Effective hybridization ofSiO2microsphere and graphene with tannic acid interface modifier for fabrication of multifunctional natural rubber/graphene nanocomposites

Author:

Du Yuqian1,Wang Xueya1,Zhou Ziwen1,Zhao Feng1,Li Song1,Liu Zhihua1,Wu Zhengyu1,Zhao Shuai1,Li Lin1

Affiliation:

1. Key Lab of Rubber‐Plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber‐Plastics, School of Polymer Science and Engineering Qingdao University of Science and Technology Qingdao China

Abstract

AbstractNowadays, although highly conductive polymer composites filled with two‐dimensional graphene‐based nano‐fillers have been explored extensively, constructing nanocomposites with high performance, industrial feasibility, and more efficient conductive networks at lower nano‐filler contents remains a challenge. To achieve the above objectives, industrial wastes microsilica powder (N98) with amorphous spherical structure and large particle size is employed in this work. And the hybrids (TGN) are obtained between N98 and graphene (GE) by the effective bridging and interface coupling of tannic acid, which can achieve the purpose of obtaining conductive composites with low‐filler contents by traditional polymer processing technologies. The volume exclusion effect of N98 and its own assisted dispersion effect can prevent and attenuate graphene agglomeration, enabling the formation of a dense, complete and uniform conductive network in natural rubber (NR) matrix based on a small amount of graphene addition (parts per thousand). Thus, it give the nanocomposite highly functional, especially electric property. The results show that when the ratio of GE to N98 hybridization is 1:20, N98 and graphene are more uniformly hybridized together, and the volume exclusion effect is best matched with the rubber composites, and the comprehensive performance is optimal. Moreover, the electrical conductivity of NR/TG1N20nanocomposite can reach the balanced value of 10−3 S·cm−1with the GE loading of 0.48 phr, which shows the effectiveness of the prepared hybrids.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Polymers and Plastics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3