Prolactin regulates RANKL expression via signal transducer and activator of transcription 5a signaling in mammary epithelial cells of dairy cows

Author:

Mao Yongjin1ORCID,Yang Huilin1,Ma Xiaocong1,Wang Chunmei1,Zhang Li1,Cui Yingjun1ORCID

Affiliation:

1. College of Life Science, Key Laboratory of Dairy Science of Education Ministry Northeast Agricultural University Harbin China

Abstract

AbstractReceptor of activated nuclear factor kappa B ligand (RANKL) is regulated by prolactin in the mammary gland. However, the intrinsic molecular mechanism is not well understood. Herein, mammary epithelial cells (MECs) of dairy cows were isolated to characterize the molecular mechanism of prolactin in vitro. We demonstrated that prolactin stimulation increased the expression of RANKL in MECs. Moreover, the expression of RANKL induced by prolactin was inhibited by the prolactin receptor or signal transducer and activator of transcription 5A (STAT5a) knockdown. Furthermore, prolactin markedly increased RANKL‐Luciferase reporter activity in MECs. We identified a putative gamma‐interferon activated site (GAS) in the region between residues −883 to −239 bp of the RANKL promoter. Subsequently, we found that the mutated GAS sequence failed to respond to prolactin stimulation. In addition, STAT5a knockdown markedly decreased prolactin‐stimulated RANKL promoter activity. Western blot results revealed that RANKL overexpression markedly decreased the STAT5a phosphorylation level in MECs. These findings indicate that prolactin could regulate RANKL promoter activity via STAT5a, contributing to increased RANKL expression in MECs. RANKL may have a negative regulatory effect on STAT5a activity.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3