MicroRNA‐17‐3p protects against excessive posthypoxic autophagy in H9C2 cardiomyocytes via PTEN–Akt–mTOR signaling pathway

Author:

He Yi1,Zhang Dengwen1,Zhang Qingqing2,Cai Yin3,Huang Chongfeng2,Xia Zhengyuan34,Wang Sheng1ORCID

Affiliation:

1. Department of Anesthesiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University Guangzhou China

2. Guangdong Provincial People's Hospital Ganzhou Hospital Ganzhou Municipal Hospital Ganzhou China

3. Department of Anesthesiology The University of Hong Kong Hong Kong SAR China

4. Department of Anesthesiology Affiliated Hospital of Guangdong Medical University Guangdong China

Abstract

AbstractThe activity of phosphatase and tensin homolog (PTEN) can be inhibited by miR‐17‐3p, which results in attenuating myocardial ischemia/reperfusion injury (IRI), however, the mechanism behind this phenomenon is still elusive. Suppression of PTEN leads to augmented protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling strength and constrained autophagy activation, which might be the one mechanism for the ameliorated myocardial IRI. Thus, we tested the hypothesis that miR‐17‐3p attenuated hypoxia/reoxygenation (H/R)‐mediated damage in cardiomyocytes by downregulating excessive autophagy via the PTEN–Akt–mTOR axis. The expression of miR‐17‐3p was remarkably increased after H/R treatment (6‐h hypoxia followed by 6‐h reoxygenation; H6/R6), which was concomitant with the increase of the release of lactic acid dehydrogenase (cell injury marker) and the enhancement LC3II/I ratio (autophagy markers) in H9C2 cardiomyocytes. Ectoexpression of miR‐17‐3p agomir led to remarkable augmentation of miR‐17‐3p expression and evidently attenuated H/R‐mediated cell damage and excessive autophagy. Furthermore, an increase in miR‐17‐3p expression elicited constrained phosphorylation of PTEN (Ser380) while enhanced the phosphorylation of Akt (Thr308, Ser473) and mTOR (Ser536) after H/R stimulation. In addition, pretreatment with LY‐294002 (an Akt selective inhibitor) and rapamycin (an mTOR selective inhibitor) significantly abrogated the protective function of miR‐17‐3p on H/R‐mediated cell damage and autophagy in H9C2 cardiomyocytes. Taken together, these observations indicated that the enhancement of the PTEN/Akt/mTOR axis and the consequent suppression of autophagy overactivation might represent an underlying mechanism by which miR‐17‐3p attenuated H/R‐mediated damage in H9C2 cells.

Publisher

Wiley

Subject

Cell Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3