Advances of MAX phases: Synthesis, characterizations and challenges

Author:

Alam Md. Shahinoor12,Chowdhury Mohammad Asaduzzaman1,Kowser Md. Arefin1,Islam Md. Saiful3ORCID,Islam Md. Moynul3,Khandaker Tasmina3

Affiliation:

1. Department of Mechanical Engineering Dhaka University of Engineering and Technology Gazipur Bangladesh

2. Department of Mechanical Engineering Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment Natore Bangladesh

3. Department of Chemistry Bangladesh Army University of Engineering and Technology, Qadirabad Cantonment Natore Bangladesh

Abstract

AbstractMAX phases and their MXene compounds have received significant attention owing to their extensive potential applications. The quality and purity of the MAX phase guarantee the desired quality of the MXene product, which is essential for a variety of applications, including energy storage, catalysis, and electrical devices. Due to the purity, quality, complex structure, and unavailable commercial pure MAX powders, it is frequently required to have sophisticated synthesis and characterization techniques for the expected MAX products. Many researchers entering this field seek a comprehensive approach to the synthesis and characterization of MAX phases. Despite this, a significant portion of existing reviews have overlooked the synthesis and characterization methods specific to MAX phases, particularly when addressing MXenes. Consequently, this review aims to offer a thorough overview of the various synthesis methods and characterization techniques that are often required for MAX phases. In this review, various synthesis techniques, including their advantages and disadvantages, have also been discussed. Characterization techniques, especially x‐ray diffraction (XRD), were found to be quite critical for new researchers. However, the integration of other techniques such as scanning electron microscopy, transmission electron microscopy, x‐ray photoelectron spectroscopy, and infrared analysis enhances and complements the findings obtained through XRD. The review also underscores the challenges associated with MAX phase synthesis and proposes potential solutions, emphasizing the assessment of their suitability across a broad spectrum of applications. Overall, this review serves as a comprehensive resource and guide for researchers engaged in the exploration and application of MAX phases, emphasizing the essential techniques of synthesis and characterization in harnessing their massive potential.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3